
Solar Panel Rotator
Ian Seremet
12/10/2023

“A robot that rotates a solar panel about a central axis to maximize solar output energy”

“This guy took my invention and just made it way cooler.”
-Charles Fritts (inventor of the solar panel)

Solar Panel Rotator
Ian Seremet
12/10/2023

The robot comprises three main subsystems: a solar panel mount, a bearing piece, and a base.
The solar panel mount maintains a fixed 38-degree angle for the solar panel. A bearing piece
minimizes friction between the stepper motor and the solar panel mount. The base houses

essential components, including the motor, wiring, Arduino, battery, and mounted photoresistors.

The solar panel's design includes a restraining lip that allows sliding motion parallel to its length
while preventing perpendicular removal. Foam padding enhances friction to prevent unintended
sliding. In the bearing mount, marbles and a marble track reduce friction between two plates

through compression fits. An adapter connects the motor to the top bearing plate, which adapts to
the solar panel mount, enabling synchronized movement.

Control involves reading photoresistor inputs using voltage dividers, resulting in four circuits.
Arduino computes average luminosity by continuously summing these readings. A "center of

luminosity" function treats the base as a Cartesian plane, finding a balance point using
luminosity as weights. Trigonometry calculates the angle relative to the nearest axis. The

quadrant identifies the point's position by examining coordinate values, assisting in determining
the total angle by adding 90 degrees for each preceding quadrant.

Robot in CAD
Ian Seremet
11/19/2023

Mechanical System Overview:

Figure 1: The image above depicts the current robot design. Looking at the tree on the left side of the screen, there
are three main parts that make up the robot. Shown in the diagram: solar base, solar mount and the bearing are all
shown. The solar bearing sits with one of its faces coincident with the surface of the solar base and will be rigidly
fixed with M5 bolts. However, the top of the solar bearing will be free to move by the rotation of a servo motor. The
solar mount will be attached to the top plate of the bearing. .

A Deeper Look:
The bottom of the robot includes a cylindrical cutout that adapts with very accurate tolerances to the servo
motor. This component is called the servo cap and will connect with the top bearing plate. This will act as
an insert into the slot of the bearing as to transfer force from the servo motor to the top piece of the
bearing mechanism.

Figure 2: The servo cap sits off-center from the
square cutout in the solar base. However, it may be
connect to the servo motor to transfer rotational
energy to the top plate of the bearing.

Figure 3: The solar mount sits on top of the top plate of the solar bearing. The bearing is separated into a
top and bottom plate, by an intermediate bearing ring. Rotation is permitted by marbles on the inside.

In order for the servo cap to transfer its rotational energy, there must be a considerable amount of friction.
After viewing this design in CAD, it has influenced my design choice of using a TPU filament in order to
offer high friction with the PLA surface of the solar bearing.

Figure 3: An exploded view of the bearing with the servo cap on the outside. The servo cap will adapt
with the servo and couple the servo to the top plate of the bearing. The servo cap will be made from TPU.

Manufacturing decisions (DFM):

Figure 4: A screenshot of the solar base by itself. It has a square cutout and two holes for mounting the
servo motor. In the corners there are 4 holes for mounting the photoresistors.

The solar base will be completely manufactured out of MDF. This will help to ensure accurate placement
of cutouts for the servo motor and the photoresistor slots. The solar base can be reduced into .DXF files
for laser printing. This is optimal for centering the servo motor, and making the spacing between the
photoresistors fair

Figure 5: CAD drawing file for the top of the solar base. The white regions depict the cutouts.

The bearing could be easily printed if it was broken into 3 smaller pieces. A bottom plate bearing ring and
a top plate would be able to be 3D printed easily as there were no overhanging structures. This design
choice would help to ensure a high quality part.

Figure 6: The 3 components for the middle bearing. The U-shape allows for the marbles to travel on a
track. The servo cap will adapt to the component on the left of the image.

The 3D printer part is built layer by layer from the build plate, so I knew the orientation for the solar
mount would be best printed on its side. Then I took into consideration support that would have to exist in
the empty region if the mount was oriented on its side. However, I knew when sliced into g-code the
supports would be easily removable as they would be fringed and connected. One tug with pliers would
ensure the supports were fully removed.

Figure 7: Shows the support pattern and orientation for the solar mount.

Part # Description Quantity Source Subtotal Cost
1 DAOKI Mini Tactile Push Button Switch 1 ME2011 kit NC
2 22 AWG Copper Solid-Core Wire (25') 1 ME2011 kit NC
3 Green LED 1 ME2011 kit NC
4 PLA Marble Bearing Risers 4 Amazon 0.23
5 HiLetgo Photoresistor (3k-8k Ohm Range) 4 Amazon 0.30
6 PLA Marble Bearing Base Piece 1 Amazon, Thingiverse 0.56
7 PLA Marble Bearing Top Piece 1 Amazon, Thingiverse 0.32
8 PLA Marble Bearing Ring 1 Amazon, Thingiverse 0.53
9 Party Marbles 8 Hobby Lobby 1.49

10 Solderless Prototyping Breadboard (Mega) 1 ME2011 kit NC
11 Solderless Prototyping Breadboard (Mini) 1 ME2011 kit NC
12 ULN2003 Stepper Motor Driver 1 ME2011 kit NC
13 FellDen Micro Solar Panels (200mA, 5V) 1 Amazon 1.05
14 M5 Bolt BLKOXIDE Hex PHS (50mm length) 4 Amazon 4.19
15 M5 Brass Threader Nut (10 mm length) 4 Amazon 3.30
16 Double Sided Adhesive Pads 3M 2 Amazon 1.20
17 Medium Density Fiberboard (12" X 24" x 1/8") 2 HSEC Makerspace 22.54
18 Resistor (5k Ohm) 4 ME2011 kit NC
19 Resistor (330 Ohm) 1 ME2011 kit NC
20 Resistor (10k Ohm) 1 ME2011 kit NC
21 Jumper Cables 6 ME2011 kit NC
22 5V Stepper Motor 28BYJ-48 1 ME2011 kit NC
23 2mm Bolt SS 2 Amazon 1.26
24 2mm Nut SS 2 Amazon 0.83
25 All-Temp Gorilla Glue Hot Glue Stick 1 HSEC Makerspace 0.10
26 TPU Stepper Motor Coupler 1 ME2011 kit 0.5
27 Arduino Uno R3 1 ME2011 kit NC
28 Arduino 9V Battery Adapter 1 ME2011 kit NC
29 PIXCELL 9V E522 Battery 1 Walmart NC
30 All-Weather Gorilla Duct Tape (2") 1 HSEC Makerspace 0.20
31 PLA Photovoltaic Risers (Protective) 4 Amazon, Thingiverse 0.22
32 PLA Solar Panel Mount 1 Amazon 0.95

DEMO RELATED ITEMS BELOW
33 Flexible Lamp (Black Color) Variable Light Source 1 Amazon 16.99

Total Cost ($): 56.53

A

B

C

D

E

1 2 3 4 5 6

A

B

C

D

E

Made with Tinkercad®

Title: Brave Esboo

Date: 12/10/2023, 7:17:12 PM Sheet: 1/1

D1
RED

R11 R4 R2 R1

R10

5k

R9

5k

R8

5k

R7

5k

BAT1

9V

1
2
3
4
5
6

M1

BAT1+

BAT1-

A0
A1
A2
A3
A4
A5

IOREF
RES

VIN
5V

3.3V

AREF

GND

RX
TX
D2

D13

D3
D4
D5
D6
D7
D8
D9
D10
D11
D12

SDA
SCL

Arduino
UNO

U1

R12

330

R13

10k

S1

BAT1+

BAT1+

BAT1-

BAT1-

U1_D9

U1_D9

U1_D8

U1_D8

U1_D10

U1_D10

U1_D11

U1_D11

// libraries and classes

#include <math.h> // library for math functions,

such as atan

#include <Stepper.h> // class for the stepper motor

functions

// Constant variables, doesn't use memory with define

#define DISTANCE 100.0

#define PHOTORESISTOR_PIN1 A1 //photoresistor number 1

analog input

#define PHOTORESISTOR_PIN2 A2 //photoresistor number 2

analog input

#define PHOTORESISTOR_PIN3 A3 //photoresistor number 3

analog input

#define PHOTORESISTOR_PIN4 A4 //photoresistor number 4

analog input

#define WATCHLED 2 // LED is pin 2

#define STARTBUTTON 3 // Start button is pin 3

const int stepsPerRevolution = 2038; // Number of steps

per revolution for 28BYJ-48 motor

const int rPerMinute = 7;

Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);

//Instance of stepper class, connects to digital pins

void setup() {

pinMode(WATCHLED, OUTPUT); // sets the LED pin as

output

pinMode(STARTBUTTON,INPUT); // sets the button pin

as input

myStepper.setSpeed(rPerMinute);

Serial.begin(9600);

Serial.println("Setup complete");

}

//Gets the average of 20 luminosity values for a

photoresistor

int getAverageLuminosity(uint8_t pin){

int sum = 0; //Creates a sum variable to represent

all of the luminosity readings added together

for (int i = 0; i < 19; i++){ //Reads and adds the

last 20 values to get the average value

sum += analogRead(pin);

}

return sum/20;

}

// For reference of later functions

// y 3 | 2

// | |

// | |

// | |(0,0)

// |-----------*---------- HOME (0 degrees)

// | |

// | |

// | |

// |_4 _ _ _ _ |_ _ _ _ _ 1_x

//

//treat the platform as a cartesian plane and determine

which quadrant it lies in

//Gets the "center of light" or balance point of the

intensity values

double getCoordinate(int l1, int l2, int l3, int l4){

double sum = l1 + l2 + l3 + l4;

return ((l1 * DISTANCE + l2 * DISTANCE) - (l3 *

DISTANCE + l4 * DISTANCE))/sum;

}

//Gets the quadrant that the average x and y value are

in

int getQuadrant(double x, double y){ //returns the

quadrant number

if (x>0 && y>0){ // if (+, +)

return 1;

} else if (x<0 && y>0){ // if (-, +)

return 2;

} else if (x<0 && y<0){ // if (-, -)

return 3;

} else if (x>0 && y<0){ // if (+, -)

return 4;

} else {

return 0;

}

}

//Finds the angle with respect to the x-axis of the

imaginary cartesian plane

int getTheta(int quad, double x, double y) {

double theta = 0.0;

if (quad == 1 || quad == 3){

theta = atan(abs(y)/abs(x));// * (180/PI);

} else if (quad == 2 || quad == 4) {

theta = atan(abs(x)/abs(y));// * (180/PI);

}

double t = (180.0/PI) * theta;

int finalTheta = ceil(t);

return finalTheta;

}

//Finds the angle that the servo needs to rotate with

respect to home.

int getServoAngle(int quad, int theta){

return (quad > 0 ? quad - 1 : 0) * 90 + theta;

}

void loop() {

// Flash watchdog LED while waiting for button press

while (digitalRead(STARTBUTTON) == LOW){

digitalWrite(WATCHLED,HIGH); // LED on

delay(250);

digitalWrite(WATCHLED,LOW); // LED off

delay(750);

}

delay(2000); // Pause for effect

char msg[128];

//ROBOT-SPECIFIC CODE STARTS

//Executes function to read intensity values 20 times

and find the average

int luminosity1 =

getAverageLuminosity(PHOTORESISTOR_PIN1);

int luminosity2 =

getAverageLuminosity(PHOTORESISTOR_PIN2);

int luminosity3 =

getAverageLuminosity(PHOTORESISTOR_PIN3);

int luminosity4 =

getAverageLuminosity(PHOTORESISTOR_PIN4);

Serial.println("avgs found"); //debug script:

checkpoint 1

sprintf(msg, "lum1 = %d, lum2 = %d, lum3 = %d, lum4 =

%d", luminosity1, luminosity2, luminosity3,

luminosity4);

Serial.println(msg);

//Gets the average x and y values w.r.t (0,0) from the

average luminosity values

double xValue = getCoordinate(luminosity1,

luminosity2, luminosity3, luminosity4);

double yValue = getCoordinate(luminosity2,

luminosity3, luminosity1, luminosity4);

char buff[6]; //Debug x-value, prints later in msg

dtostrf(xValue, 4, 2, buff);

char buff2[6]; //Debug y-value, prints later in msg

dtostrf(yValue, 4, 2,buff2);

sprintf(msg, "X = %s, Y = %s", buff, buff2);

Serial.println(msg);

//Executes and gets theta

int finalAngle = 0; //finalAngle represents the

complete number of degrees to rotate w.r.t home position

int theta = 0; //theta represents the angle to rotate

from the nearest axis

int quadrant = 0; //quadrant treats surface as a

cartesian plane and notifies which quadrant the point is

in

if (xValue == 0){

if (yValue > 0){

finalAngle = 90;

} else if(yValue < 0){

finalAngle = 270;

} else if (yValue == 0){

finalAngle = 0;

}

} else if (yValue == 0) {

if (xValue > 0){

finalAngle = 0;

} else if (xValue < 0){

finalAngle = 180;

} else if (xValue == 0){

finalAngle = 0;

}

} else if (xValue != 0 && yValue != 0){

quadrant = getQuadrant(xValue, yValue);

theta = getTheta(quadrant, xValue, yValue);

finalAngle = getServoAngle(quadrant, theta);

}

sprintf(msg, "quadrant = %d, theta = %d, finalAngle =

%d", quadrant, theta, finalAngle);

Serial.println(msg); //debugs angle, quadrant and

final angle values

//Finds the steps that the stepper needs to rotate

from the home position

int steps = ((double)stepsPerRevolution / 360.0) *

(double) finalAngle;

int stepsccw = steps * -1;

sprintf(msg, "steps = %d, stepsccw = %d", steps,

stepsccw);

Serial.println(msg);

//Rotate the motor by x steps

myStepper.step(stepsccw);

delay(10000); // Wait a minute before the next action

myStepper.step(steps); //returns to the original

position...assuming the power doesn't go out

}

